Immunotherapy in Hematological Malignancies 2023

DICHIARAZIONE

Relatore: Angelo Vacca

Come da nuova regolamentazione della Commissione Nazionale per la Formazione Continua del Ministero della Salute, è richiesta la trasparenza delle fonti di finanziamento e dei rapporti con soggetti portatori di interessi commerciali in campo sanitario.

- Posizione di dipendente in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE / NOME AZIENDA)
- Consulenza ad aziende con interessi commerciali in campo sanitario (GSK, CsI-Behring/ Takeda/ Novartis Oncology)
- Fondi per la ricerca da aziende con interessi commerciali in campo sanitario (Takeda IgRT, AstraZeneca)
- Partecipazione ad Advisory Board (Csl-Behring)
- Titolarità di brevetti in compartecipazione ad aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE /

NOME AZIENDA)

- Partecipazioni azionarie in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE / NOME AZIENDA)
- Altro

Immunotherapy in Hematological Malignancies 2023

The tumor microenvironment in MM: hurdles or opportunities for immunotherapy?

Angelo Vacca

Organized by Prof. Massimo Massaia, SC Ematologia AO S.Croce e Carle, Cuneo, Italy and Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Torino, Italy

May 18-20

Rondò dei talenti, Cuneo

Immunotherapy in Itematological Malignancies 2023

Bone marrow microenvironment in multiple myeloma

NON-CELLULAR (ECM fibers, soluble factors) AND CELLULAR COMPARTMENT (hematopoietic and non-hematopoietic cells)

IMMUNOSURVEILLANCE ESCAPE AND DRUG RESISTANCE

Solimando et al, Cancers 2022

Immunotherapy in Hematological Malignancies 2023

Bone marrow angiogenesis in patients with active multiple myeloma

Vessel arborizations

MGUS: no vessels

Vacca et al, Br J Haematol 1994

Immunotherapy in Hematological Malignancies 2023

Time-course of angiogenesis induction by myeloma plasma cells in the *in vivo* CAM-sponge assay

Prof. Domenico Ribatti

Vacca & Ribatti, Leukemia 2006; Ribatti – Vacca, Leukemia 2007

VEGF-A+ myeloma plasma cells

Immunotherapy in Hematological Malignancies 2023

Prof. C. Martelli and his group, Perugia

Università degli Studi di Perugia

Comitato per la Vita A.O. Perugia "Daniele Chianelli"

PREMIO ANTONIO TABILIO dedicato alla produzione scientifica di un giovane ricercatore in campo ematologico

CUNEO, MAY 18-20, 2023 RONDÒ DEI TALENTI

gp 91phex - FITC

CID 34

fferentiatio factors

merge

Immunotherapy in Hematological Malignancies 2023

Vasculogenesis in patients with MM: differentiation of mobilized CD34⁺CD133⁺ hematopoietic precursors into mature endothelial cells

VEGF + FGF-2 + IGF on fibronectin

Ria R. et al, Clin Cancer Res 2008

Immunotherapy in Hematological Malignancies 2023

Incorporation of CD133⁺ hematopoietic precursors into the neovessel walls of myeloma patients

Immunotherapy in Hematological Malignancies 2023

Tumor associated macrophages in multiple myeloma mimic endothelial cells

CUNEO, MAY 18-20, 2023

RONDÒ DEI TALENTI

Capillarogenic activity of macrophages and endothelial cells

MACROPHAGES CONTRIBUTE TO BUILD NEOVESSELS IN ACTIVE MM THROUGH VASCULOGENIC MIMICRY

Immunotherapy in Hematological Malignancies 2023

Myeloma macrophages cooperate with endothelial cells in building the neovessel wall in myeloma

EC-LIKE MACROPHAGES AND MACROPHAGES FORM 'MOSAIC' VESSELS IN BONE MARROW OF PATIENTS WITH ACTIVE MYELOMA BUT NOT IN THOSE WITH MGUS

Immunotherapy in Hematological Malignancies 2023

Supervised analysis MMECs vs MGECs

DIRASS COL6A1 COLEAS EGFR POSTN ASPN GEM CXCL12 TNC LDB2 CTSK SRPX PCOLCE SERPINF1 KRT7 **BNIP3** IER3 HSP87 COL4A1 CRYAB SEPW1 PRG1

Searching genes specifically distinguishing MM vs MGUS endothelial cells

22 genes down

Ria et al, Clin. Cancer Res. 2009

Immunotherapy in Hematological Malignancies 2023

Genes expressed by myeloma endothelial cells support homing and survival of plasma cells and microenvironment cells

Immunotherapy in Hematological Malignancies 2023

Interactions between endothelial cells and A T cells in myeloma microenvironment

Immunotherapy in Hematological Malignancies 2023

Phenotype of bone marrow endothelial cells in active myeloma

MGUS

Myeloma

Immunotherapy in Hematological Malignancies 2023

Ability of bone marrow endothelial cells to stimulate <u>autologous</u> (myeloma-restricted)

CD8⁺T cells (from bone marrow) (1)

PROLIFERATION

Immunotherapy in Hematological Malignancies 2023

Ability of bone marrow endothelial cells to stimulate autologous (myeloma-restricted)

CD8⁺T cells (from bone marrow) (2)

Immunotherapy in Hematological Malignancies 2023

Antigen-specific suppressor capacity of endothelial cell-reactive CCR7⁺CD8⁺T cells (4 experiments)

RONDÒ DEI TALENTI

Immunotherapy in Hematological Malignancies 2023

CONCLUSIONS

Tumor-specific effector memory CD8⁺ T cells in the bone marrow of patients with multiple myeloma are inefficient because of the concomitant presence of endothelial cell-reactive tumor-specific central memory CD8⁺ T cells producing considerable amounts of IL-10 and TGF- β .

ANGIOGENESIS IS IMMUNOSUPPRESSIVE IN PATIENTS

WITH MULTIPLE MYELOMA

Immunotherapy in Hematological Malignancies 2023

Frequency of DCs in whole blood and marrow samples

Leone et al, Blood 2015

Immunotherapy in Hematological Malignancies 2023

CD28+ plasma cells and their T cell evasion

Immunotherapy in Hematological Malignancies 2023

Immunotherapy in Hematological Malignancies 2023

Comment on Leone et al, page 1443 Myeloma escape from immunity: an "inside" job

Aaron P. Rapoport UNIVERSITY OF MARYLAND SCHOOL OF MEDICINE

In this issue of Blood, Leone et al describe a novel mechanism mediated by bone marrow dendritic cells (DCs) that impairs T-cell recognition and killing of myeloma cells.

> DCs protect tumor plasma cells from CD8+ T cell killing

Immunotherapy in Hematological Malignancies 2023

Fibroblasts increase in bone marrow of myeloma patients and mice; and are always in close contact with plasma cells

Frassanito et al. Leukemia 2014

CUNEO, MAY 18-20, 2023 RONDÒ DEI TALENTI

Drs. M.A. Frassanito, V. Desantis, L. Di Marzo, I. Saltarella, A. Lamanuzzi, my lab

Fibroblasts induce myeloma initiation and progression

Immunotherapy in Hematological Malignancies 2023

Immunotherapy in Hematological Malignancies 2023

FB-derived exosomes (FB EXOs) promote an early uptake-independent overangiogenic effect in MMECs

Immunotherapy in Hematological Malignancies 2023

FB-derived exosomes (FB EXOs) contain angiogenic cytokines and activate MMECs

FB EXOs foster an early uptake-independent angiogenic effect in a cytokine-mediated fashion

Patient's biopsy

Immunotherapy in Hematological Malignancies 2023

FB-derived exosomes (FB EXOs) induce a late angiogenic response after their uptake

In vitro angiogenesis after 24 hours of FB EXOs:MMECs coculture

Immunotherapy in Hematological Malignancies 2023

Modulation of intracellular pathways at 1 and 24 hours of FB EXOs : MMECs coculture

Phospho-kinase array of MMECs co-cultured with FB EXOs

Immunotherapy in Hematological Malignancies 2023

Different miRNAs expression profile in fibroblasts from Myeloma vs. MGUS patients

Twenty-six differentially expressed miRNAs were identified, 9 were up-regulated and 17 down-regulated:

qRT-PCR

The top miRNAs UP REGULATED are:

- hsa-miR-23b-3p fold change: 0.351
- hsa-miR-27 fold change: 0.366
- hsa-miR-125 fold change: 0.431
- hsa-miR-214 fold change: 0.342
- hsa-miR-199a-5p fold change: 0.33

Frassanito et al. J. Pathol. 2019

CUNEO, MAY 18-20, 2023 RONDÒ DEI TALENTI

Upregulation of miR-27 and miR-214 in fibroblasts of patients with myeloma vs. MGUS MGUS

miR-27/FAP

In situ hybridization

Fibroblasts co-expression of FAP (brown) and the miRNA (blue) gives dark-brown dots

Immunotherapy in Hematological Malignancies 2023

Effect of miRNA-27 and miRNA-214 inhibition on proliferation and apoptosis of myeloma fibroblasts

Immunotherapy in Hematological Malignancies 2023

Fibroblasts-derived exosomes (FB EXOs) are fully uptaken by myeloma cells

SYTO RNASelect
BODIPY TR
MERGE

Image: I

Frassanito et al. J. Pathol. 2019

Immunotherapy in Hematological Malignancies 2023

FBxW7 is a component of SCF complex: it binds specific protein substrates, i.e. Notch, Cyclin E, Mcl-1, for ubiquitylation and degradation

PTEN is the main negative regulator of PI3K/AKT pathway

FBxW7 and PTEN pathways are involved in cell proliferation and apoptosis

miRNA-27 and miRNA-214 gene targets (by MIRANDA and TargetScan)

Frassanito et al. J. Pathol. 2019

Immunotherapy in Hematological Malignancies 2023

Do myeloma FB EXOs express the same up-regulated miRNAs of myeloma FBs?Yes! They do!

Are myeloma FB EXOs involved in myeloma cells proliferation and anti-apoptosis?Yes! They are!

Immunotherapy in Hematological Malignancies 2023

The overexpressed miRNAs in FB EXOs overlap the aberrant miRNA profile of fibroblasts in MM patients

Frassanito et al. J. Pathol. 2019

Myeloma FB EXOs

qRT-PCR studies reveal higher expression of miR-23, -27, -125, -214 and -5100 in MM FB EXOs than MGUS FB EXOs.

Immunotherapy in Hematological Malignancies 2023

MM cells do uptake FB EXOs but selectively overexpress only miR-214 and miR-5100 (but not miR-23, miR-27, nor miR-125)

miR.5100

Saltarella et al., J. Pathol. 2022

Immunotherapy in Hematological Malignancies 2023

FB EXOs modulate intracellular pathways

Immunotherapy in Hematological Malignancies 2023

miRNA-214 and miRNA-5100 target genes indicate that FB EXOs enhance MM cell proliferation...

Immunotherapy in Hematological Malignancies 2023

Bort-induced apoptosis of MM cells

Immunotherapy in Hematological Malignancies 2023

Why do MM cells selectively uptake only miR-214 and miR-5100?

miRNAs transfered in MM cells

Immunotherapy in Hematological Malignancies **2023**

ONCOLOGY LETTERS 19: 595-605, 2020			https://doi.	org/10.1038/s41375-	020-01034-y		
		Ī	ARTIC	LE			Chera far
Research progress on the interactions between long non-coding RNAs and microRNAs in human cancer (Review)			Multiple myeloma gammopathies The long non-coding RNA CRNDE regulates growth of multiple myeloma cells via an effect on IL6 signalling				3
BINYU	$\mathrm{SUN}^*,$ CHUNXIA LIU *, HAO LI, LUZHANG, GANG LUO, SICHENG LIANG and MUHAN LÜ	1	Antoine Wendy (David G	David 💿 ¹ • Sime Cuccuini ⁴ • Jean arrick 🎯 ¹	one Zocchi ¹ • Alexis Talbot⊚ ^{1,2} • Caroline Ch Soulier ^{4,5} • Bertrand Arnulf ^{1,2} • Jean-Christop	oisy ¹ • Ashley Ohnona ¹ • J bhe Bories ¹ • Michele Goo	lulien Lion ³ • dhardt ¹ •
Yin et al. 8M https://doi.o	MC Medical Genomica (2020) 13.94 org/10.1186/s12920-029-00741-w BMC Medical Genomic	s	ar fi	rontiers n Oncology		pub doi: 10.33	MINI REVIEW Eshed: 25 July 2019 89/fond.2019.00669
RESE Con: miRl com func Junhao Y	ARCH ARTICLE Open Acces struction and analysis of a InCRNA- NA-mRNA network based on petitive endogenous RNA reveal ctional InCRNAs in oral cancer ^{IN³} , Xuol Zeng ³ , Zein Al ³ , Mao Yu ³ , Yang'ou Wu ² and Shenglao Li ^{2*}				Crosstalk Between RNAs, Micro-RNAs Deciphering Molec of Master Regulato	Long Non-c and mRNAs ular Mechan ors in Cancer	oding :: isms
261	Contents lists available at ScienceDirect Biomedicine & Pharmacotherapy			Olgun et https://d	.al. BMC Genomics (2018) 19:650 loi.org/10.1186/s12864-018-5006-1	BM	VIC Genomics
ELSEVIER Review Potential I Jin-yan Wan Meili Chen, I Department of Oncolog	Journal homepage: www.elsevier.com/locate/biopha regulatory role of lncRNA-miRNA-mRNA axis in osteosau g ¹ , Yau Yang ¹ , Yajun Ma ¹ , Fen Wang, Alli Xue, Jing Zhu, Hui Yang, Qi Lingling Ye, Hao Wu, Quan'an Zhang ⁺ ge. Tre.4/filiat Janging Hogel with Wanging Maded University, Nanjing 210000, Jangue, JP China	CON	na n,	Dis int sub	EARCH ARTICLE covering IncRNA medi eractions in breast can otypes n Olgun ¹ , Ozgur Sahin ² and Oznur Tastan ³²	iated sponge cer molecula	Open Access

Expression of long non-coding RNAs in MM cells

IncRNA	miRNA target	Ref
HOTAIR	miRNA-23	T Yang <i>et al.,</i> Gene. 2018
TOB1-AS1	miRNA-23 and miRNA-27	WJ Shangguan et al., Exp Ther Med. 2019
MALAT1	miRNA-125	H Xie <i>et al.,</i> J Cancer. 2017

Immunotherapy in Hematological Malignancies 2023

Saltarella et al., Cancers 2022

scramble siHOTAIR scramble siHOTAIR m R N A e x p ression 10 m iR N A fold expression 8 miR-23 6 overexpression fo Id 4 HOTAIR 2 n IncTOB1-AS1 inhibition m iR-23 scramble siTOB1-AS1 scramble siTOB1-AS1 0 10 m iR N A expression m R N A e x p res sio miR-23 and miR-8 6 27 4 P overexpression fo I fold 2 TOB1-AS1 m iR-23 m iR - 27 **IncMALAT1** inhibition scramble scramble siM A L A T 1 siM ALAT1 2.0 mRNA fold expression miR-125 overexpression υ 9 0.5 9 ο 0.0 MALAT1 m iR-125

U266 cells plus EXO

IncHOTAIR inhibition

Immunotherapy in Hematological Malignancies 2023

CONCLUSIONS

> Myeloma FBs create a supportive niche for plasma cell proliferation, anti-apoptosis and drug resistance;

FBs express an aberrant miRNA profile in myeloma patients;

> FBs-derived EXOs selectively transfer miR-214 and miR-5100 into MM cells modulating the MAPK, β -catenin/Wnt, mTOR, p53 pathways that enhance cell proliferation and reduce spontaneous and bortezomib-induced apoptosis;

➤ The selective miRNAs transfer into plasma cells is due to expression of specific lncRNAs by these cells.

Immunotherapy in Hematological Malignancies 2023

Anti-angiogenic activity of anti-myeloma drugs

Immunotherapy in Hematological Malignancies 2023

Internal Medicine Unit «Guido Baccelli»:

Collaborations

K. Vanderkerken - Myeloma Center Brussels, Vrije Universiteit Brussel, Belgium

H. Einsele, MD - University of Würzburg, Germany

- G. Martinelli Direttore Scientifico dell'Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori"- IRST S.r.l. Irccs
- M. Bellone Unità Clinica di Immunologia, Reumatologia, Allergologia e Malattie rare dell'IRCCS Ospedale San Raffaele, Milano

Lab Angiogenesis and Vascular Biology

M.A. Frassanito, PhD

I. Saltarella, PhD

A. Lamanuzzi, PhD

Associazione Italiana per la Ricerca sul Cancro (AIRC, Milan)

UNIVERSITÀ degli studi di bari ALDO MORO

Immunotherapy in Hematological Malignancies 2023

Immunotherapy in Hematological Malignancies 2023

FB extracellular vescicles induce the secretion of angiogenic factors that sustain angiogenic loops in MM

Angiogenesis array of MMECs co-cultured with FBEVs for 24 hours

(Lamanuzzi A et al. Biomedicines, submitted)